초록
In this paper, an attempt has been made to propose a multi-commodity cold storage to store a variety of high value perishable commodities round the year. To maintain the favorable micro-climate inside the cold storage space for the selected commodities, a cooling system based on double-effect vapor absorption cycle has been developed. To meet the year-round thermal and electrical load of the proposed cold storage, a solar thermal-PV-based hybrid power system has been designed. A computer program in MATLAB-R2017a has been developed to predict the year-round performance of the proposed system for a complete calendar year for the climatic condition of Kolkata, India (22.57∘N, 88.36∘E). An exergy analysis of the proposed system has also been included in the study. Finally, a life cycle cost analysis of the integrated solar hybrid power system has been performed to estimate its payback period. The study reveals that the mutual generation from 45 numbers of parabolic trough collectors along with 225 numbers of SPV modules is sufficient to meet the year-round energy demand of the proposed cold storage. The study thus reinforces the need and viability of double-effect VAR system-based multi-commodity cold storage powered through solar energy for developing countries like India, where significant amount of agricultural production gets wasted due to inadequate warehousing facilities.
닫기